Reg. No.				
Keg. No.				
_				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
III	PART - III	CORE - 6	U23MA306	DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Date & Session: 12.11.2024 / AN Time: 3 hours Maximum: 75 Marks

Date	& Sessic	on: 12.	11.2024 / AN Time : 3 hours	Maximum: 75 Marks
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.	
CO1	K1	1.	In solvable for y, $f(x,y,p) = 0$ can be put in the form	
CO1	K2	2.	a) $y = F(x,p)$ b) $y = F(p,x)$ c) $x = F(p,y)$ The operator D^2 is denoted by	
			a) $\frac{dy}{dx}$ b) $\frac{dx}{dy}$ c) $\frac{d^2y}{dx^2}$	$d) \frac{d^2x}{dy^2}$
CO2	K1	3.	The solution of $(D^2 - 5D + 4)y = 0$ is	
			,	d) $y = c_1 e^x + c_2 e^{-x}$
CO2	K2	4.	a) $y = c_1 e^x + c_2 e^{4x}$ b) $y = c_1 e^x - c_2 e^{4x}$ c) $y = c_1 e^{-x} + c_2 e^{4x}$ The solution of $\frac{1}{D^2 + a^2} \cos ax$ is	
			a) $\frac{x \sin ax}{a}$ b) $\frac{x \sin ax}{2a}$ c) $\frac{x \cos ax}{a}$ The solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y \cos^2 x = 0$ is	d) $\frac{x\cos ax}{2a}$
CO3	K1	5.	The solution of $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y \cos^2 x = 0$ is	
			a) $A\cos(\sin x) + B\sin(\sin x)$ b) $A\cos(\sin x) - B\sin(\sin x)$	$n(\sin x)$
			c) $A \sin(\sin x) + B \sin(\sin x)$ d) $A \cos(\cos x) + B \sin(\sin x)$	in(sin x)
CO3	K2	6.	Which one of following is a linear form?	
			a) $\frac{dy}{dx} + Py = 0$ b) $\frac{d^2y}{dx^2} + Py = 0$ c) $\frac{d^3y}{dx^3} + Py = 0$	$d)\frac{d^4y}{dx^4} + Py = 0$
CO4	K1	7.	The result of eliminating the arbitrary function from $z = f(x^2)$	$(x^2 + y^2)$ is
			a) py=qx b) p=q c) y=x	d) py=x
CO4	K2	8.	Which one of following form is Clairant's form?	
			a) $z = px + qy$ b) $z = px + qy + f(p,q)$ c) $z = px - qy$	d) z = px + qy - f(p,q)
CO5	K1	9.	A chemical reaction of growth and decay is called a	eaction
CO5	K2	10.	The algebraic sum of electromotive forces around a closed circ	cuit is
			a) 0 b)1 c) 2	d) n

Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B}{\text{Answer }} \text{ ALL Questions choosing either (a) or (b)}$
CO1	К3	11a.	Solve $y = xp + x(1 + p^2)^{1/2}$
CO1	КЗ	11b.	Solve $xp^2 - 2yp + x = 0$.
CO2	КЗ		Solve $(D^3 + 5D + 6)y = e^x$. (OR)
CO2	КЗ	12b.	Solve $(D^2 - 8D + 9)y = 8\sin 5x$.
CO3	K4	13a.	Solve $x \frac{d^2 y}{dx^2} - (2x - 1)\frac{dy}{dx} + (x - 1)y = e^x$.
			(\mathbf{OR})
CO3	K4	13b.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} - 5y = \sin(\log x).$
CO4	K4	14a.	Eliminate f and ϕ from the relation $z = f(x + ay) + \phi(x - ay)$.
CO4	K4	14b.	Solve $(y+z)p + (z+x)q = x + y$.
CO5	K5	15a.	If the population of a country doubles in 50 years in how many years will it treble under the assumption that the ratio of increase is proportional to the number of inhabitants?
			(OR)
CO5	K5	15b.	Solve $L\frac{dI}{dt} + RI = E_0$ with the following initial conditions. I_0 is the current flow
			initially. E_0 is the constant electromotive force impressed on the circuit at t=0.

Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C}{\text{Answer ALL Questions choosing either (a) or (b)}}$ Answer ALL Questions choosing either (a) or (b)
CO1	КЗ	16a.	Solve $x^2 = 1 + p^2$.
			(OR)
CO1	КЗ	16b.	Solve $\frac{dx}{dt} + 2x - 3y = t; \frac{dy}{dt} - 3x + 2y = e^{2t}.$ Solve $(D^3 - 2D + 4)y = e^x \cos x.$
CO2	K4	17a.	Solve $(D^3 - 2D + 4)y = e^x \cos x$.
			(OR)
CO2	K4	17b.	Solve $(D^2 + 4)y = x \sin x$.
CO3	K4	18a.	· /
		10a.	Solve $x^2 \frac{d^2 y}{dx^2} - (x^2 + 2x) \frac{dy}{dx} + (x+2)y = x^3 e^x$.
			(OR)
CO3	K4	18b.	Solve $x^2y''-xy'+4y = \cos(\log x) + x\sin(\log x)$
CO4	K5	19a.	Solve $(y^2 + z)px - (x^2 + z)qy = z(x^2 - y^2)$.
			(OR)
CO4	K5	19b.	Solve $p^2 + q^2 = npq$.
CO5	K5	20a.	In a certain chemical reaction the rate of conversion of a substance at time t is proportional to the quantity of the substance still untransformed at the instant. At the end of one hour 60 grams remain and at the end of 4 hours 21 grams remain. How many grams of the substance were there initially. (OR)
CO5	K5	20b.	Explain Brachistochrone problem.